Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
1.
Nanotechnology ; 35(30)2024 May 09.
Article in English | MEDLINE | ID: mdl-38604152

ABSTRACT

The pursuit of van der Waals (vdW) heterostructures with high Curie temperature and strong perpendicular magnetic anisotropy (PMA) is vital to the advancement of next generation spintronic devices. First-principles calculations are used to study the electronic structures and magnetic characteristics of GaN/VS2vdW heterostructure under biaxial strain and electrostatic doping. Our findings show that a ferromagnetic ground state with a remarkable Curie temperature (477 K), much above room temperature, exists in GaN/VS2vdW heterostructure and 100% spin polarization efficiency. Additionally, GaN/VS2vdW heterostructure still maintains PMA under biaxial strain, which is indispensable for high-density information storage. We further explore the electron, magnetic, and transport properties of VS2/GaN/VS2vdW sandwich heterostructure, where the magnetoresistivity can reach as high as 40%. Our research indicates that the heterostructure constructed by combining the ferromagnet VS2and the non-magnetic semiconductor GaN is a promising material for vdW spin valve devices at room temperature.

2.
BMC Genom Data ; 25(1): 37, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637749

ABSTRACT

BACKGROUND: Sweet yellow clover (Melilotus officinalis) is a diploid plant (2n = 16) that is native to Europe. It is an excellent legume forage. It can both fix nitrogen and serve as a medicine. A genome assembly of Melilotus officinalis that was collected from Best corporation in Beijing is available based on Nanopore sequencing. The genome of Melilotus officinalis was sequenced, assembled, and annotated. RESULTS: The latest PacBio third generation HiFi assembly and sequencing strategies were used to produce a Melilotus officinalis genome assembly size of 1,066 Mbp, contig N50 = 5 Mbp, scaffold N50 = 130 Mbp, and complete benchmarking universal single-copy orthologs (BUSCOs) = 96.4%. This annotation produced 47,873 high-confidence gene models, which will substantially aid in our research on molecular breeding. A collinear analysis showed that Melilotus officinalis and Medicago truncatula shared conserved synteny. The expansion and contraction of gene families showed that Melilotus officinalis expanded by 565 gene families and shrank by 56 gene families. The contacted gene families were associated with response to stimulus, nucleotide binding, and small molecule binding. Thus, it is related to a family of genes associated with peptidase activity, which could lead to better stress tolerance in plants. CONCLUSIONS: In this study, the latest PacBio technology was used to assemble and sequence the genome of the Melilotus officinalis and annotate its protein-coding genes. These results will expand the genomic resources available for Melilotus officinalis and should assist in subsequent research on sweet yellow clover plants.


Subject(s)
Medicago truncatula , Melilotus , Genomics/methods , Genome Size , Synteny
3.
Small ; : e2309499, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38624172

ABSTRACT

Various semiconductor devices have been developed based on 2D heterojunction materials owing to their distinctive optoelectronic properties. However, to achieve efficient charge transfer at their interface remains a major challenge. Herein, an alloy heterojunction concept is proposed. The sulfur vacancies in ZnIn2S4 are filled with selenium atoms of PdSe2. This chemically bonded heterojunction can significantly enhance the separation of photocarriers, providing notable advantages in the field of photoelectric conversion. As a demonstration, a two-terminal photodetector based on the PdSe2/ZnIn2S4 heterojunction materials is fabricated. The photodetector exhibits stable operation in ambient conditions, showcasing superior performance in terms of large photocurrent, high responsivity (48.8 mA W-1) and detectivity (1.98 × 1011 Jones). To further validate the excellent optoelectronic performance of the heterojunction, a tri-terminal phototransistor is also fabricated. Benefiting from gate voltage modulation, the photocurrent is amplified to milliampere level, and the responsivity is increased to 229.14 mA W-1. These findings collectively demonstrate the significant potential of the chemically bonded PdSe2/ZnIn2S4 alloy heterojunction for future optoelectronic applications.

4.
J Plant Physiol ; 295: 154207, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430574

ABSTRACT

Alfalfa (Medicago sativa) is one of the most widely cultivated forage crops in the world. However, alfalfa yield and quality are adversely affected by salinity stress. Nodulin 26-like intrinsic proteins (NIPs) play essential roles in water and small molecules transport and response to salt stress. Here, we isolated a salt stress responsive MsNIP2 gene and demonstrated its functions by overexpression in alfalfa. The open reading frame of MsNIP2 is 816 bp in length, and it encodes 272 amino acids. It has six transmembrane domains and two NPA motifs. MsNIP2 showed high identity to other known NIP proteins, and its tertiary model was similar to the crystal structure of OsNIP2-1 (7cjs) tetramer. Subcellular localization analysis showed that MsNIP2 protein fused with green fluorescent protein (GFP) was localized to the plasma membrane. Transgenic alfalfa lines overexpressing MsNIP2 showed significantly higher height and branch number compared with the non-transgenic control. The POD and CAT activity of the transgenic alfalfa lines was significantly increased and their MDA content was notably reduced compared with the control group under the treatment of NaCl. The transgenic lines showed higher capability in scavenging oxygen radicals with lighter NBT staining than the control under salt stress. The transgenic lines showed relative lower water loss rate and electrolyte leakage, but relatively higher Na+ content than the control line under salt stress. The relative expression levels of abiotic-stress-related genes (MsHSP23, MsCOR47, MsATPase, and MsRD2) in three transgenic lines were compared with the control, among them, only the expression of MsCOR47 was up-regulated. Consequently, this study offers a novel perspective for exploring the function of MsNIP2 in improving salt tolerance of alfalfa.


Subject(s)
Medicago sativa , Salt Tolerance , Salt Tolerance/genetics , Medicago sativa/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Stress, Physiological , Plant Proteins/genetics , Plant Proteins/metabolism , Water/metabolism , Gene Expression Regulation, Plant , Salinity
5.
Front Public Health ; 12: 1322426, 2024.
Article in English | MEDLINE | ID: mdl-38304182

ABSTRACT

Objective: To investigate the positivity rates and drug resistance characteristics of Mycobacterium tuberculosis (MTB) among suspected tuberculosis (TB) patients in Shandong Province, the second-largest population province in China. Methods: A prospective, multi-center study was conducted from April 2022 to June 2023. Pathogen and drug resistance were identified using nucleotide matrix-assisted laser desorption ionization time-of-flight mass spectrometry (nucleotide MALDI-TOF MS). Results: Of 940 suspected TB patients included in this study, 552 cases were found to be infected with MTB giving an overall positivity rate of 58.72%. Total of 346 cases were resistant to arbitrary anti-TB drug (62.68%), with Zibo (76.47%), Liaocheng and Weihai (both 69.23%) ranking top three and TB treatment history might be a related factor. Monoresistance was the most common pattern (33.53%), with isoniazid the highest at 12.43%, followed by rifampicin at 9.54%. Further analysis of gene mutations conferring resistance revealed diverse types with high heteroresistance rate found in multiple anti-TB drugs. Conclusion: A relatively high rate of MTB positivity and drug resistance was found in Shandong Province during and after the COVID-19 pandemic, indicating the need for strengthening rapid identification of species and drug resistance among suspected TB patients to guide better medication and minimize the occurrence of drug resistance.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/genetics , Nucleotides , Pandemics , Prospective Studies , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Tuberculosis/epidemiology
6.
Photodiagnosis Photodyn Ther ; 45: 103992, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38281611

ABSTRACT

OBJECTIVE: Photodynamic therapy (PDT) plays an important role for root canal disinfection. Nevertheless, the effect of photosensitizers penetrating dentin tubules is limited, which ultimately impedes the disinfection effect of PDT. The study implements an Er: YAG laser to activate methylene blue, the photosensitizer, to determine the bactericidal impact of PDT on Enterococcus faecalis in vitro root canals. METHODS: We obtained 53 single root canal teeth with intact roots, standardized the root to 9 mm. The root canals were prepared using ProTaper rotary files. Subsequently, the teeth were sterilized, and Enterococcus faecalis was cultured for 3 weeks in vitro using brain heart infusion (BHI). The model of Enterococcus faecalis root canal infection of teeth was constructed by observing Enterococcus faecalis through electron microscope scanning. The teeth were randomly allocated to five treatment groups (n = 10): control, NaOCl, NaOCl + Er: YAG, PDT, and PDT + Er: YAG. Following treatment, the number of colony forming units (CFU)/ml was assessed for each group. Statistical analysis was conducted using one-way ANOVA, with post-hoc analysis using Tukey's test for multiple comparisons. RESULTS: The colony counts in the remaining groups were significantly lower compared to the control group (P<0.001). Using PDT alone had the least impact on reducing colonies, while using PDT and Er: YAG laser together resulted in a significant reduction in colony counts (P<0.001). There was no significant difference in colony counts reduction between the NaOCl + Er: YAG group and the PDT + Er: YAG group (P = 1.000). CONCLUSIONS: The combination of Er: YAG laser and PDT significantly enhanced the bactericidal efficacy of PDT against Enterococcus faecalis in root canals. It had a similar impact on eliminating Enterococcus faecalis when compared to the effect of using Er: YAG laser and NaOCl.


Subject(s)
Lasers, Solid-State , Photochemotherapy , Dental Pulp Cavity , Enterococcus faecalis , Lasers, Solid-State/therapeutic use , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photochemotherapy/methods , Anti-Bacterial Agents
7.
Br J Nutr ; 131(8): 1342-1351, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38149470

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a prevalent liver disorder, affecting approximately 25 % of the population. Coffee-drinking obese smokers exhibit lower body weights and decreased NAFLD rates, but the reasons behind this remain unclear. Additionally, the effect of nicotine, the main component of tobacco, on the development of NAFLD is still controversial. Our study aimed to explore the possible reasons that drinking coffee could alleviate NAFLD and gain weight and identify the real role of nicotine in NAFLD of obese smokers. A NAFLD model in mice was induced by administering nicotine and a high-fat diet (HFD). We recorded changes in body weight and daily food intake, measured the weights of the liver and visceral fat, and observed liver and adipose tissue histopathology. Lipid levels, liver function, liver malondialdehyde (MDA), superoxide dismutase (SOD), serum inflammatory cytokine levels and the expression of hepatic genes involved in lipid metabolism were determined. Our results demonstrated that nicotine exacerbated the development of NAFLD and caffeine had a hepatoprotective effect on NAFLD. The administration of caffeine could ameliorate nicotine-plus-HFD-induced NAFLD by reducing lipid accumulation, regulating hepatic lipid metabolism, alleviating oxidative stress, attenuating inflammatory response and restoring hepatic functions. These results might explain why obese smokers with high coffee consumption exhibit the lower incidence rate of NAFLD and tend to be leaner. It is essential to emphasise that the detrimental impact of smoking on health is multifaceted. Smoking cessation remains the sole practical and effective strategy for averting the tobacco-related complications and reducing the risk of mortality.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Humans , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/genetics , Coffee , Caffeine , Nicotine/metabolism , Nicotine/pharmacology , Diet, High-Fat/adverse effects , Smokers , Liver/metabolism , Obesity/complications , Obesity/metabolism , Weight Gain , Lipid Metabolism , Lipids/pharmacology , Mice, Inbred C57BL
8.
Se Pu ; 41(12): 1073-1083, 2023 Dec.
Article in Chinese | MEDLINE | ID: mdl-38093537

ABSTRACT

The cardinal clinical features of Parkinson's disease (PD), a common neurodegenerative disease, include the irreversible impairment of movement coordination, such as tremors, gait rigidity, bradykinesia, and hypokinesia. Although various factors are associated with the pathological changes in PD, such as oxidative stress, mitochondrial dysfunction, and neuroinflammation, the availability of treatments to retard PD progression is limited. Therefore, novel biomarkers for PD diagnosis and therapeutic targets are urgently needed. The diagnosis of PD mainly depends on its clinical manifestations and has an error rate of approximately 20%. Studies have shown that α-synuclein (α-syn) levels are significantly increased in the cerebrospinal fluid of patients with PD; however, the invasive nature of lumbar puncture restricts further studies on its clinical applications. Hence, the development of novel peripheral blood markers would be helpful for the early diagnosis of PD. Exosomes are extracellular vesicles (EVs) released by various cell types under physiological and pathophysiological conditions. Because exosomes carry a variety of bioactive molecules, they play a key role in biological processes such as intercellular communication and the immune response. Central nervous system (CNS)-derived exosomes can be detected in the cerebrospinal and peripheral body fluids of patients with PD, and their contents are altered during the disease process, rendering them an attractive biomarker resource. Therefore, a comprehensive and high-throughput investigation of the plasma and its exosomes may enhance our understanding of PD. In this study, we isolated exosomes from plasma using standard differential centrifugation and performed tandem mass tag (TMT)-labeled quantitative proteomic analysis of plasma and plasma exosome samples from healthy individuals and patients with PD using liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 724 proteins were quantified in the plasma samples, and 611 proteins were screened from the exosome samples. Among these 611 proteins, 413 were found in the Exosomal Protein Database (Exocarta). Using |log2FC|>0.26 and P-value (P)<0.05 as the cutoff, five upregulated and six downregulated proteins were identified in the plasma samples of the PD group compared with the healthy group. In the plasma exosome samples, compared with the healthy group, the PD group showed six upregulated and seven downregulated proteins. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted based on gene set enrichment analysis (GSEA). GO-cellular component (CC) analysis revealed that plasma-enriched proteins were mainly located in the nucleus whereas plasma exosome-enriched proteins were mainly located in the cytoplasm. According to the GO-molecular function (MF) analysis, the MFs of differentially expressed proteins in the plasma were mainly enriched in RNA, DNA binding, and complement binding. By contrast, the molecular functions of differentially expressed proteins derived from plasma exosomes were enriched in antioxidant activity, oxidoreductase activity, and peroxide acceptor activity. We then analyzed the enriched KEGG pathways of differentially expressed proteins derived from the plasma and plasma exosome samples. The enrichment pathways of differentially expressed proteins in the plasma samples included the lysosome pathway, cellular senescence, and protein processing in the endoplasmic reticulum. By contrast, the enrichment pathways of differentially expressed proteins in the plasma exosome samples included chemokine signaling and cytokine receptor interactions. Finally, we assessed the functions of some exosomal proteins in PD to elucidate their potential for PD diagnosis and treatment. Significant differences were observed between the plasma and plasma exosome protein profiles, and the functions of differentially expressed proteins in plasma exosomes were strongly related to the pathology of PD. Our study provides a reference for identifying the potential biomarkers and therapeutic targets of PD.


Subject(s)
Exosomes , Neurodegenerative Diseases , Parkinson Disease , Humans , Parkinson Disease/cerebrospinal fluid , Parkinson Disease/genetics , Exosomes/chemistry , Exosomes/genetics , Exosomes/metabolism , Neurodegenerative Diseases/metabolism , Proteomics/methods , Chromatography, Liquid , Tandem Mass Spectrometry , Biomarkers/analysis
9.
Tissue Cell ; 85: 102260, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37913602

ABSTRACT

BACKGROUND: Salvianolic acid B (SalB) is a bioactive extract of Salvia miltiorrhiza with the ability to ameliorate amyloid beta (Aß)-induced neuronal degeneration and neuroinflammation in Alzheimer's disease (AD). However, the underlying mechanisms of this action have not been elucidated. Herein, we aimed to investigate whether the neuroprotective effect of SalB is attributable to the modulation of microglial polarization and NLRP3 inflammasome-mediated neuroinflammation. METHODS: Based on the TMT-labeled proteomics analysis, immunofluorescence, western blot and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were employed to investigate the effects of SalB on neuroinflammation in Aß1-42-stimulated BV2 microglia cells. RESULTS: At the proteomic level, a total of 6631 proteins were quantified, and of these, 104 were significantly influenced under Aß1-42 treatment. The expression of 36 Aß1-42-induced differentially expressed proteins were significantly recovered by SalB treatment (13 upregulated and 23 downregulated). NLRP3 was significantly recovered and was identified as one of the hub proteins. Consistent with the result of the proteomic analysis, western blot and qRT-PCR demonstrated that SalB reduced Aß1-42-induced NLRP3 upregulation at both the protein and mRNA levels. In addition, SalB significantly blocked M1 microglia polarization, enhanced M2 microglial polarization, and inhibited the production of caspase-1 and interleukin-1ß in BV2 microglia cells. CONCLUSION: our study demonstrated, for the first time, that the anti-inflammatory effects of SalB were mediated by the regulation of NLRP3 activation and promotion of microglial M2 polarization, indicating the potential of SalB as a novel therapeutic candidate for AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/therapeutic use , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neuroinflammatory Diseases , Proteomics , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics
10.
ACS Appl Mater Interfaces ; 15(48): 56014-56021, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37994881

ABSTRACT

Two-dimensional (2D) organic-inorganic hybrid perovskites (OIPs) have exhibited ideal prospects for perovskite photodetectors (PDs) owing to their remarkable environmental stability, tunable band gap, and structural diversity. However, most perovskites face the great challenge of a narrow spectral response. Integrating 2D OIPs with a suitable wide band gap semiconductor gives opportunities to broaden the response spectra. Here, a photodetector based on the BA2PbI4/GaN heterostructure with a broadband photoresponse covering from the ultraviolet (UV) to visible band is designed. We demonstrate that the device is capable of detecting in the UV region by p-GaN being integrated with BA2PbI4. The morphology and material optical properties of BA2PbI4 are characterized by transmission electron microscopy (TEM) and photoluminescence (PL). Additionally, the current-voltage (I-V) characteristics and photoresponses of the BA2PbI4/GaN heterojunction photodetector are investigated. The response spectrum of the photodetector is broadened from the visible to UV region, exhibiting good rectifying behavior in the dark conditions and a broadband photoresponse from the UV to the visible region. Additionally, the energy band is used to analyze the current mechanism of the BA2PbI4/GaN heterojunction PD. This study is expected to provide a new insight of optoelectronic devices by integrating 2D OIPs such as BA2PbI4 and wide-band-gap semiconductors such as GaN to broaden the response spectra.

11.
BMC Health Serv Res ; 23(1): 1212, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37932737

ABSTRACT

BACKGROUND: As a global pandemic, The Corona Virus Disease 2019 (COVID-19) has brought significant challenges to the primary health care (PHC) system. Health professionals are constantly affected by the pandemic's harmful impact on their mental health and are at significant risk of job burnout. Therefore, it is essential to gain a comprehensive understanding of how their burnout was affected. The study aimed to examine the relationship between COVID-19 event strength and job burnout among PHC providers and to explore the single mediating effect of job stress and work engagement and the chain mediating effect of these two variables on this relationship. METHODS: Multilevel stratified convenience sampling method was used to recruit 1148 primary medical staff from 48 PHC institutions in Jilin Province, China. All participants completed questionnaires regarding sociodemographic characteristics, COVID-19 event strength, job stress, work engagement, and job burnout. The chain mediation model was analyzed using SPSS PROCESS 3.5 Macro Model 6. RESULTS: COVID-19 event strength not only positively predicted job burnout, but also indirectly influenced job burnout through the mediation of job stress and work engagement, thereby influencing job burnout through the "job stress → work engagement" chain. CONCLUSIONS: This study extends the application of event systems theory and enriches the literature about how the COVID-19 pandemic impacted PHC medical staff job burnout. The findings derived from our study have critical implications for current and future emergency response and public policy in the long-term COVID-19 disease management period.


Subject(s)
Burnout, Professional , COVID-19 , Occupational Stress , Humans , Pandemics , Job Satisfaction , Burnout, Professional/psychology , Occupational Stress/psychology , Medical Staff , Surveys and Questionnaires
12.
Nanoscale ; 15(45): 18435-18446, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37937951

ABSTRACT

Multi-band electromagnetically induced transparency (EIT) effects have attracted widespread attention due to their great application prospects. However, their realization is mainly based on the coupling of multiple sub-resonators that typically exceed the number of transparency peaks, resulting in complex structural designs and cumbersome preparation procedures. This paper reports a simple design of a terahertz metamaterial that can produce the triple-band EIT effect using two "big-bright" mode coupling of two sub-resonators. The design adopts the classical two-layer structure. A U-shaped split-ring resonator and a fork-shaped resonator form a periodic array on the surface of the flexible organic polymer material. Three transparency peaks around 0.59 THz, 1.07 THz, and 1.34 THz are experimentally realized, and their formation mechanisms are explored. Furthermore, the triple-band EIT metamaterial was prepared by the photolithography technology and characterized by terahertz time-domain spectroscopy. Theoretical simulation results agree well with experimental results. Sensing characteristics and slow light effects of the terahertz metamaterial are further discussed experimentally. The proposed triple-band EIT metamaterial having excellent properties, including thin size, good flexibility, simple and compact structure, and high sensing sensitivity, could provide guidance for the subsequent design and implementation of multifunctional multi-band EIT metamaterials.

13.
Animals (Basel) ; 13(19)2023 Oct 08.
Article in English | MEDLINE | ID: mdl-37835746

ABSTRACT

The aim of this study was to investigate the effects of mixed organic acids (MOAs) on growth performance, immunity, antioxidants, intestinal digestion, and barrier function in Ira rabbits. A total of 192 weaned male Ira rabbits at 35 days of age were randomly assigned to four groups with six replicates of eight rabbits each. The rabbits in the control group (CON) were fed a basal diet, and the antibiotic group (SAL) was fed a basal diet supplemented with 60 mg/kg salinomycin. The test groups were fed a basal diet supplemented with 1000 mg/kg and 2000 mg/kg MOAs (MOA1 and MOA2, respectively). The experiment lasted for 55 days. The results showed that the ADG of Ira rabbits in the SAL group and MOA1 group was higher than that in the CON group (p < 0.05). The serum IL-6 and liver MDA levels of Ira rabbits in the SAL group, MOA1 group, and MOA2 group were lower than those in the CON group (p < 0.05). In addition, sIgA levels in the jejunal mucosa of Ira rabbits in the SAL group and MOA1 group were increased compared with those in the CON group (p < 0.05). Compared with the CON group, the gene expression of IL-6 was decreased (p < 0.05) in the jejunal mucosa of Ira rabbits in the SAL, MOA1, and MOA2 groups, while the gene expression of IL-1ß tended to decrease (p = 0.077) and the IL-10 content tended to increase (p = 0.062). Moreover, the gene expression of ZO-1 in the jejunal mucosa of Ira rabbits was elevated in the MOA1 group compared with the CON group (p < 0.05). In conclusion, dietary supplementation with MOAs can improve growth performance, enhance immune function and antioxidant capacity, and maintain the intestinal barrier in weaned Ira rabbits.

14.
Opt Express ; 31(20): 32393-32403, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37859044

ABSTRACT

We propose a heterogeneous structure, which are composed of two valley photonic crystals (VPCs) with opposite valley Chern numbers and air channel. With the increasing width of the air channel, valley-locked waveguide modes are found in topological bandgap by analyzing energy bands. Finite element method (FEM) simulation results show that the fundamental and high order modes are valley-locked, propagating unidirectionally under the excitation of chiral source, and possess higher flux compared to the valley-locked topological edge state in the domain wall. Besides, the immunity to backscattering in bend and couplers, and the robustness to random disorders are discussed in detail. We also investigate the one-way multimode interference (MMI) effect based on valley-locked waveguide modes, and design topological beam splitters. Our study provides a novel idea for topological transport with high flux, and more freedom to design valley-locked waveguide devices, including bends, couplers and splitters.

15.
Nanotechnology ; 34(50)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37748450

ABSTRACT

Photovoltaic device is highly dependent on the weather, which is completely ineffective on rainy days. Therefore, it is very significant to design an all-weather power generation system that can utilize a variety of natural energy. This work develops a water droplet friction power generation (WDFG)/solar-thermal power generation (STG) hybrid system. The WDFG consists of two metal electrodes and a candle soot/polymer composite film, which also can be regarded as a capacitor. Thus, the capacitor coupled power generation (C-WDFG) device can achieve a sustainable and stable direct-current (DC) output under continuous dripping without external conversion circuits. A single device can produce an open-circuit voltage of ca.0.52 V and a short-circuit current of ca.0.06 mA, which can be further scaled up through series or parallel connection to drive commercial electronics. Moreover, we demonstrate that the C-WDFG is highly compatible with the thermoelectric device. The excellent photothermal performance of soot/polymer composite film can efficiently convert solar into heat, which is then converted to electricity by the thermoelectric device. Therefore, this C-WDFG/STG hybrid system can work in both rainy and sunny days.

16.
Nat Plants ; 9(10): 1760-1775, 2023 10.
Article in English | MEDLINE | ID: mdl-37749240

ABSTRACT

Accurate delineation of plant cell organelles from electron microscope images is essential for understanding subcellular behaviour and function. Here we develop a deep-learning pipeline, called the organelle segmentation network (OrgSegNet), for pixel-wise segmentation to identify chloroplasts, mitochondria, nuclei and vacuoles. OrgSegNet was evaluated on a large manually annotated dataset collected from 19 plant species and achieved state-of-the-art segmentation performance. We defined three digital traits (shape complexity, electron density and cross-sectional area) to track the quantitative features of individual organelles in 2D images and released an open-source web tool called Plantorganelle Hunter for quantitatively profiling subcellular morphology. In addition, the automatic segmentation method was successfully applied to a serial-sectioning scanning microscope technique to create a 3D cell model that offers unique views of the morphology and distribution of these organelles. The functionalities of Plantorganelle Hunter can be easily operated, which will increase efficiency and productivity for the plant science community, and enhance understanding of subcellular biology.


Subject(s)
Deep Learning , Microscopy, Electron , Cell Nucleus , Mitochondria , Chloroplasts
17.
Front Plant Sci ; 14: 1269286, 2023.
Article in English | MEDLINE | ID: mdl-37719216

ABSTRACT

Introduction: Choline participates in plant stress tolerance through glycine betaine (GB) and phospholipid metabolism. As a salt-sensitive turfgrass species, Kentucky bluegrass (Poa pratensis) is the main turfgrass species in cool-season areas. Methods: To improve salinity tolerance and investigate the effects of choline on the physiological and lipidomic responses of turfgrass plants under salinity stress conditions, exogenous choline chloride was applied to Kentucky bluegrass exposed to salt stress. Results: From physiological indicators, exogenous choline chloride could alleviate salt stress injury in Kentucky bluegrass. Lipid analysis showed that exogenous choline chloride under salt-stress conditions remodeled the content of phospholipids, glycolipids, and lysophospholipids. Monogalactosyl diacylglycerol, digalactosyl diacylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and lysophosphatidylcholine content were increased and phosphatidic acid content were decreased in plants after exogenous choline chloride under salt treatment. Plant leaf choline content increased, but GB was not detected in exogenous choline chloride treatment plants under nonstress or salt-stress conditions. Discussion: GB synthesis pathway related genes showed no clear change to choline chloride treatment, whereas cytidyldiphosphate-choline (CDP-choline) pathway genes were upregulated by choline chloride treatment. These results reveal that lipid remodeling through choline metabolism plays an important role in the salt tolerance mechanism of Kentucky bluegrass. Furthermore, the lipids selected in this study could serve as biomarkers for further improvement of salt-sensitive grass species.

18.
Opt Express ; 31(19): 30495-30504, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37710590

ABSTRACT

We have designed a metal-semiconductor-metal (MSM) solar-blind ultraviolet (UV) photodetector (PD) by utilizing Al0.55Ga0.45N/Al0.4Ga0.6N/Al0.65Ga0.35N heterostructures. The interdigital Ni/Au metal stack is deposited on the Al0.55Ga0.45N layer to form Schottky contacts. The AlGaN hetero-epilayers with varying Al content contribute to the formation of a two-dimensional electron gas (2DEG) conduction channel and the enhancement of the built-in electric field in the Al0.4Ga0.6N absorption layer. This strong electric field facilitates the efficient separation of photogenerated electron-hole pairs. Consequently, the fabricated PD exhibits an ultra-low dark current of 1.6 × 10-11 A and a broad spectral response ranging from 220 to 280 nm, with a peak responsivity of 14.08 A/W at -20 V. Besides, the PD demonstrates an ultrahigh detectivity of 2.28 × 1013 Jones at -5 V. Furthermore, to investigate the underlying physical mechanism of the designed solar-blind UV PD, we have conducted comprehensive two-dimensional device simulations.

19.
Opt Express ; 31(19): 31597-31609, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37710674

ABSTRACT

In this work, we utilize simulated annealing algorithm with neural network, to achieve rapid design of topological photonic crystals. We firstly train a high-accuracy neural network that predicts the band structure of hexagonal lattice photonic crystals. Subsequently, we embed the neural network into the simulated annealing algorithm, and choose the on-demand evaluation functions for optimizing topological band gaps. As examples, designing from the Dirac crystal of hexagonal lattice, two types of valley photonic crystals with the relative bandwidth of bandgap 26.8% and 47.6%, and one type of pseudospin photonic crystal with the relative bandwidth of bandgap 28.8% are obtained. In a further way, domain walls composed of valley photonic crystals (pseudospin photonic crystals) are also proposed, and full-wave simulations are conducted to verify the valley-locked (pseudospin-locked) edge states unidirectionally propagates under the excitation of circularly polarized source. Our proposed method demonstrates the efficiency and flexibility of neural network with simulated annealing algorithm in designing topological photonic crystals.

20.
Plant Methods ; 19(1): 82, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37563698

ABSTRACT

BACKGROUND: Pumpkin seeds are major oil crops with high nutritional value and high oil content. The collection and identification of different pumpkin germplasm resources play a significant role in the realization of precision breeding and variety improvement. In this research, we collected 75 species of pumpkin from the Zhejiang Province of China. 35,927 near-infrared hyperspectral images of 75 types of pumpkin seeds were used as the research object. RESULTS: To realize the rapid classification of pumpkin seed varieties, position attention embedded three-dimensional convolutional neural network (PA-3DCNN) was designed based on hyperspectral image technology. The experimental results showed that PA-3DCNN had the best classification effect than other classical machine learning technology. The classification accuracy of 99.14% and 95.20% were severally reached on the training and test sets. We also demonstrated that the PA-3DCNN model performed well in next year's classification with fine-tuning and met with 94.8% accuracy. CONCLUSIONS: The model performance improved by introducing double convolution and pooling structure and position attention module. Meanwhile, the generalization performance of the model was verified, which can be adopted for the classification of pumpkin seeds in multiple years. This study provided a new strategy and a feasible technical approach for identifying germplasm resources of pumpkin seeds.

SELECTION OF CITATIONS
SEARCH DETAIL
...